

Problem 3

Step	N'	$D(t), p(t)$	$D(u), p(u)$	$D(v), p(v)$	$D(w), p(w)$	$D(y), p(y)$	$D(z), p(z)$
0	x	∞	∞	3,x	6,x	6,x	8,x
1	xv	7,v	6,v	3,x	6,x	6,x	8,x
2	xvu	7,v	6,v	3,x	6,x	6,x	8,x
3	xvuw	7,v	6,v	3,x	6,x	6,x	8,x
4	xvuw	7,v	6,v	3,x	6,x	6,x	8,x
5	xvuwyt	7,v	6,v	3,x	6,x	6,x	8,x
6	xvuwytz	7,v	6,v	3,x	6,x	6,x	8,x

Problem 7

a) $D(x) = 2, D(y) = 4, D(u) = 7$

b) First consider what happens if $c(x,y)$ changes. If $c(x,y)$ becomes larger or smaller (as long as $c(x,y) \geq 1$), the least cost path from x to u will still have cost at least 7. Thus a change in $c(x,y)$ (if $c(x,y) \geq 1$) will not cause x to inform its neighbors of any changes.
If $c(x,y) = \delta < 1$, then the least cost path now passes through y and has cost $\delta + 6$.

Now consider if $c(x,w)$ changes. If $c(x,w) = \varepsilon \leq 1$, then the least-cost path to u continues to pass through w and its cost changes to $5 + \varepsilon$; x will inform its neighbors of this new cost. If $c(x,w) = \delta > 6$, then the least cost path now passes through y and has cost 11; again x will inform its neighbors of this new cost.

c) Any change in link cost $c(x,y)$ (and as long as $c(x,y) \geq 1$) will not cause x to inform its neighbors of a new minimum-cost path to u .

Problem 14

a) eBGP

b) iBGP

c) eBGP

d) iBGP

Problem 16

One way for C to force B to hand over all of B's traffic to D on the east coast is for C to only advertise its route to D via its east coast peering point with C.

Problem 18

BitTorrent file sharing and Skype P2P applications.

Consider a BitTorrent file sharing network in which peer 1, 2, and 3 are in stub networks W, X, and Y respectively. Due to the mechanism of BitTorrent's file sharing, it is quite possible that peer 2 gets data chunks from peer 1 and then forwards those data chunks to 3. This is equivalent to B forwarding data that is finally destined to stub network Y.

Problem 19

A should advise to B two routes, AS-paths A-W and A-V.

A should advise to C only one route, A-V.

C receives AS paths: B-A-W, B-A-V, A-V.

<https://web.ugreen.cloud/web/#/share/7e3fbf19de1e4c5a926cac68aab7c7a9>

提取码: 9T8T