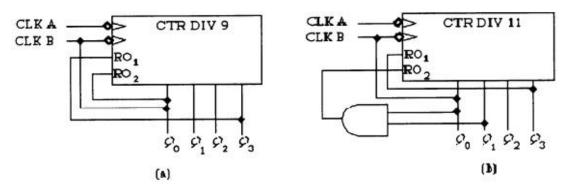
作业批改链接

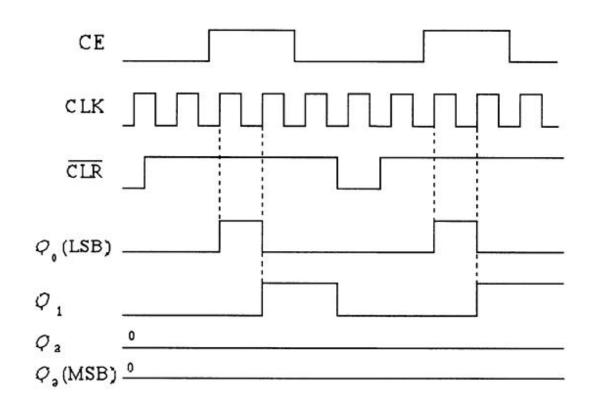
https://web.ugreen.cloud/web/#/share/d36b09cb49454a37bd8fdc75faf8a781 提取码: 4A58

Homework 6

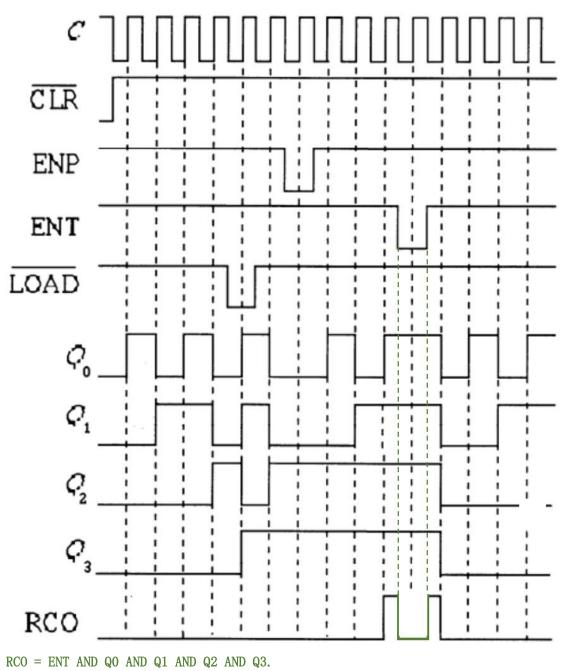
Due 14:20, Tuesday @ Week 12


"Digital Fundamentals", **11th Edition**

Chapter 9, Problems

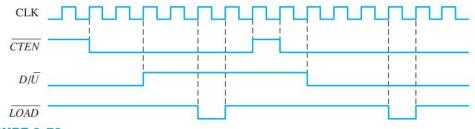

6(a)(b), 10, 12, 16, 18, 22, 24(d)

<u>Make sure that the output diagram is aligned with the input</u> <u>diagram.</u>


T6(a)(b)

1001、1011

T12



Note: The RCO is a combinational logic output and is independent of the clock.

T16

16. Repeat Problem 15 if the D/\overline{U} input signal is inverted with the other inputs the same.

15. Develop the Q output waveforms for a 74HC190 up/down counter with the input waveforms shown in Figure 9–72. A binary 0 is on the data inputs. Start with a count of 0000.

FIGURE 9-72

Note 1: The 74HC190 is a decade (decimal) counter. The maximum value of Q is 9 Note 2: Edge-triggered devices respond to the input levels present just before the clock edge.

The values of Q at fifteen rising edges are as follows:

CTEN	CTEN	-1	-1	+1	+1	LOAD	+1	CTEN	+1	-1	-1	-1	LOAD	-1
0	0	9	8	9	0	0	1	1	2	1	0	9	0	9

T18

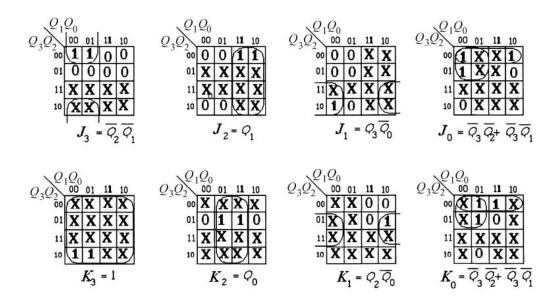
	Q_2	Q_1	Q_0	D_2	D_1	D_0
Initially	0	0	0	0	0	1
At CLK 1	0	0	1	0	1	1
At CLK 2	0	1	1	1	1	1
At CLK 3	1	1	1	1	1	0
At CLK 4	1	1	0	1	0	0
At CLK 5	1	0	0	0	0	1
At CLK 6	0	0	1	0	1	1

The sequence is 000 to 001 to 011 to 111 to 110 to 100 and back to 001, etc.

$$egin{aligned} D_0 &= \overline{Q_0 \cdot Q_1} \ D_1 &= Q_0 \ D_2 &= Q_1 \end{aligned}$$

$$egin{aligned} Q_0^+ &= D_0 = \overline{Q_0 \cdot Q_1} \ Q_1^+ &= D_1 = Q_0 \ Q_2^+ &= D_2 = Q_1 \end{aligned}$$

T22


NEXT-STATE TABLE

P	resen	t Sta	te]	Next	State	e
Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0
0	0	0	0	1	0	0	1
1	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0
1	0	0	0	0	0	1	0
0	0	1	0	0	1	1	1
0	1	1	1	0	0	1	1
0	0	1	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	0	0

TRANSITION TABLE

Output State Transition (Present State to next state)				Flip-flop Inputs									
Q_3	Q_2	Q_1	Q_0	J_3	K_3	J_2	K_2	J_1	K_1	J_0	K_0		
0 to 1	0 to 0	0 to 0	0 to 1	1	X	0	X	0	X	1	X		
1 to 0	0 to 0	0 to 0	0 to 1	X	1	0	X	0	X	X	0		
0 to 1	0 to 0	0 to 0	1 to 0	1	X	0	X	0	X	X	1		
1 to 0	0 to 0	0 to 1	0 to 0	X	1	0	X	1	X	0	X		
0 to 0	0 to 1	1 to 1	0 to 1	0	X	1	X	X	0	1	X		
0 to 0	1 to 0	1 to 1	1 to 1	0	X	X	1	X	0	X	0		
0 to 0	0 to 1	1 to 1	1 to 0	0	X	1	X	X	0	X	1		
0 to 0	1 to 1	1 to 0	0 to 0	0	X	X	0	X	1	0	X		
0 to 0	1 to 1	0 to 0	0 to 1	0	X	X	0	0	X	1	X		
0 to 0	1 to 0	0 to 0	1 to 0	0	X	X	1	0	X	X	1		

Binary states for 10, 11, 12, 13, 14, and 15 are unallowed and can be represented by don't cares.

T24(d)

 $Modulus = 2 \times 4 \times 6 \times 8 \times 16 = 6144$

$$f_{1} = \frac{39.4 \text{ kHz}}{2} = 19.7 \text{ kHz}$$

$$f_{2} = \frac{19.7 \text{ kHz}}{4} = 4.925 \text{ kHz}$$

$$f_{3} = \frac{4.925 \text{ kHz}}{6} = 820.83 \text{ Hz}$$

$$f_{4} = \frac{820.683}{8} = 102.6 \text{ Hz}$$

$$f_{5} = \frac{102.6 \text{ Hz}}{16} = 6.41 \text{ Hz}$$